Robot Manipulation for Unstructured Environments

Project Overview
Core Areas: 
Abstract: 
In order to perform autonomous sequential manipulation tasks, perception in cluttered scenes remains a critical challenge for robots. We have developed a probabilistic approach for robust sequential scene estimation and manipulation - Sequential Scene Understanding and Manipulation (SUM). SUM considers uncertainty due to discriminative object detection and recognition in the generative estimation of the most likely object poses maintained over time to achieve a robust estimation of the scene under heavy occlusions and unstructured environment. Our method utilizes candidates from discriminative object detector and recognizer to guide the generative process of sampling scene hypothesis, and each scene hypotheses is evaluated against the observations. Also, SUM maintains beliefs of scene hypothesis over robot physical actions for better estimation and against noisy detections. We will conduct experiments in unstructured environments to show that our approach is able to perform robust estimation and manipulation.
Investigator Info
Years active: 
2017